Neuralangelo
Neuralangelo
High-Fidelity Neural Surface Reconstruction
Motivation
- Muti-resolution 3D hash grid
- numerical gradients for computing higher-order derivatives as a smoothing operation
Background
- Volume rendering of SDF opacity value \(\alpha_i\) introduced by Neus
\(\Phi_s\) is sigmoid function
# Background - Multi-resolution hash encoding. Input position \(x_i\) Resolution \(l\)
# Numerical Gradient Computation - Eikonal loss 需要求二阶导 - 解析梯度只能优化相邻的 vertex
Numerical Gradient Computation
step size 作为对解析导数平滑度的指标 - \(\epsilon\) 越大,重建越平滑的区域 - 反之,则重建细节 - 根据 hash grid 调整 \(\epsilon\)
Progressive Levels of Details
- 先激活 coarse grid
- 降低 \(\epsilon\) 的同时,激活 fine grid
- weight decay 避免单一分辨率主导
curvature loss
Encourage smoothness