Neuralangelo

Neuralangelo

High-Fidelity Neural Surface Reconstruction

Motivation

  • Muti-resolution 3D hash grid
  • numerical gradients for computing higher-order derivatives as a smoothing operation

Background

  • Volume rendering of SDF opacity value \(\alpha_i\) introduced by Neus 20231009-Neuralangelo-2023-10-10-22-46-26

\(\Phi_s\) is sigmoid function

# Background - Multi-resolution hash encoding. Input position \(x_i\) Resolution \(l\) 20231009-Neuralangelo-2023-10-10-22-49-06

# Numerical Gradient Computation - Eikonal loss 需要求二阶导 - 解析梯度只能优化相邻的 vertex 20231009-Neuralangelo-2023-10-11-00-43-51

Numerical Gradient Computation

bg right 100% step size 作为对解析导数平滑度的指标 - \(\epsilon\) 越大,重建越平滑的区域 - 反之,则重建细节 - 根据 hash grid 调整 \(\epsilon\)

Progressive Levels of Details

  • 先激活 coarse grid
  • 降低 \(\epsilon\) 的同时,激活 fine grid
  • weight decay 避免单一分辨率主导

curvature loss

Encourage smoothness
20231009-Neuralangelo-2023-10-11-01-01-28