DMT
Deep Marching Tetrahedra:
A Hybrid Representation for High-Resolution 3D Shape Synthesis
Background
SDF and OF (occupancy) : implicit
Marching Cube: extract mesh from implicit and expensive
Motivation
- Supervise directly on the target surface
- Combine implicit and explicit
Overview
Overview
- Input: Point Cloud \(x\), Grid Vertex \(v\)
- Initialization: Predict SDF for each vertex
- Training:
- Surface Refinement with Volume Subdivision
- Discriminator
Volume Subdivision

Marching Tetrahedra

3D Discriminator
- 从目标网格中随机选择一个高曲率顶点 v,并在 v 周围的体素化区域计算真实 SDF \(S_{real}\)
- 在预测网格同一位置得到周围的SDF \(S_{pred}\)
- 将\(S_{real}\) 和 \(S_{pred}\) 输入到 MLP 中, 判断是真实网格的概率
Loss
Surface Alignment loss

Adversarial Loss

Loss
Regularization
Avoid flipping the SDF sign of all vertices, which may lead to disconnected conponents during training

My discussion
Mobile NeRF