三角形中的几个恒等式
在 \(\Delta ABC\) 中,以下等式成立
正余弦平方和
\[ \sin A+\sin B+\sin C=4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}\ \tag{1} \]
证:
\[ \begin{aligned} LHS &= 2\,\sin \frac{A+B}{2}\,\cos \frac{A-B}{2} +\sin C \\ &= 2 \,\cos \frac{C}{2}\,\cos \frac{A-B}{2}+2\,\sin \frac{C}{2}\,\cos \frac{C}{2}\\ &=2\,\cos \frac{C}{2}\,(\cos \frac{A-B}{2}+\cos \frac{A+B}{2})\\ &=4\,\cos \frac{A}{2}\,\cos \frac{B}{2}\,\cos \frac{C}{2} \\ \end{aligned} \]
\[ \cos A+\cos B+\cos C=1+4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\\ \tag{2} \]
证:
\[ \begin{aligned} LHS &= 2\,\cos \frac{A+B}{2}\,\cos \frac{A-B}{2} + 1-2\,\sin ^2\frac{C}{2} \\ &= 1-2\,\sin \frac{C}{2}\,(\sin \frac{C}{2}-\cos \frac{A-B}{2}) \\ &=1-2\,\sin \frac{C}{2}\,(\cos \frac{A+B}{2}-\cos \frac{A-B}{2}) \\ &=1-2\,\sin \frac{C}{2}\,(-2\,\sin \frac{A}{2}\,\sin \frac{B}{2})\\ &=1+4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} \end{aligned} \]
正余半角平方和
\[ \sin ^2\frac{A}{2}+\sin ^2\frac{B}{2}+\sin ^2\frac{C}{2}= 1-2\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\tag{3} \]
证:
\[ \begin{aligned} RHS &= 1+\sin \frac{C}{2}\,(\cos \frac{A+B}{2}-\cos \frac{A-B}{2}) \\ &= 1+\sin ^2\frac{C}{2}- \cos \frac{A+B}{2}\cos \frac{A-B}{2}\\ &= 1+\sin ^2\frac{C}{2}-\frac{\cos A+\cos B}{2} \\ &= 1+\sin ^2\frac{C}{2}-\frac{2-2\sin ^2\frac{A}{2}-2\sin ^2\frac{B}{2}}{2} \\ &= \sin ^2\frac{A}{2}+\sin ^2\frac{B}{2}+\sin ^2\frac{C}{2} \end{aligned} \]
同理易得:
\[ \cos ^2\frac{A}{2}+\cos ^2\frac{B}{2}+\cos ^2\frac{C}{2}= 2+2\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\tag{4} \]
正割余割和
\[ \tan A+\tan B+\tan C=\tan A\;\tan B\;\tan C \tag{5} \]
证:
\[ \begin{gather*} \text{和角公式:}\tan C = -\frac{\tan A+\tan B}{1-\tan A\;\tan B}\\ \tan C-\tan A\;\tan B\;\tan C = -(\tan A+\tan B)\\ \text{移项后得到结论} \end{gather*} \]
推论:
\[ \cot A\,\cot B+\cot A\,\cot C+\cot B\,\cot C =1\tag{6} \]
证:
\[ \begin{aligned} \text{由 (5)得到: }\frac{1}{\tan A\,\tan B}&=\frac{\tan C}{\tan A+\tan B+\tan C}\\ \frac{1}{\tan A\,\tan C}&=\frac{\tan B}{\tan A+\tan B+\tan C}\\ \frac{1}{\tan B\,\tan C}&=\frac{\tan A}{\tan A+\tan B+\tan C}\\ \end{aligned} \]
三个式子相加即可
正余割半角
\[ \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} = \cot \frac{A}{2}\,\cot \frac{B}{2}\,\cot \frac{C}{2} \tag{7} \]
证: 受到 (5) 启发,只需证明
\[ cot \frac{C}{2} = -\frac{\cot \frac{A}{2}+\cot \frac{B}{2}}{1-\cot \frac{A}{2}\,\cot \frac{B}{2}} \]
即证:
\[ \begin{gather*} \tan\frac{C}{2} =\frac{\cot \frac{A}{2}\,\cot \frac{B}{2}-1}{\cot \frac{A}{2}+\cot \frac{B}{2}}\\ \Leftarrow \tan\frac{C}{2} = \frac{1-\tan\frac{A}{2}\tan\frac{B}{2}}{\tan\frac{A}{2}+\tan\frac{B}{2}} \end{gather*} \]
推论:
\[ \tan\frac{A}{2}\tan\frac{B}{2}+\tan\frac{B}{2}\tan\frac{C}{2}+\tan\frac{A}{2}\tan\frac{C}{2} = 1 \tag{8} \]
由 (7) 移项得到
\[ \begin{gather*} \tan\frac{A}{2}\tan\frac{B}{2}=\frac{\tan\frac{A}{2}\,\tan\frac{B}{2}\,\tan\frac{B}{2}\,\cot\frac{C}{2}}{\tan\frac{A}{2}+\tan\frac{B}{2}+\tan\frac{C}{2}}\\ \tan\frac{A}{2}\tan\frac{C}{2}=\frac{\tan\frac{A}{2}\,\tan\frac{B}{2}\,\tan\frac{B}{2}\,\cot\frac{B}{2}}{\tan\frac{A}{2}+\tan\frac{B}{2}+\tan\frac{C}{2}}\\ \tan\frac{B}{2}\tan\frac{C}{2}=\frac{\tan\frac{A}{2}\,\tan\frac{B}{2}\,\tan\frac{B}{2}\,\cot\frac{A}{2}}{\tan\frac{A}{2}+\tan\frac{B}{2}+\tan\frac{C}{2}}\\ \end{gather*} \\ \]
三个式子相加即可